Irradiation et scanner, ce que le prescripteur doit savoir en 2016

Prof. Xavier Montet, MD

Division of Radiology

Geneva University Hospital

Switzerland

Personalized CT protocols ?

Should we use the same CT protocol for

- A 16-years old women of 40 kg

- A 86-years old men of 96 kg

Personalized CT protocols ?

Should we use the same CT protocol for

- A 16-years old women of 40 kg
 - More sensitive to radiation
 - More time to develop a cancer
 - Less sensitive to iodinated contrast media
- A 86-years old men of 96 kg
 - Less sensitive to radiation
 - Less time to develop a cancer
 - More sensitive to iodinated contrast media

Weight

We need less energy to go through 40 kg than through 96 kg Do not use the same kVp

Men vs Women

• Try to decrease the irradiation to the breast

Use more x-rays when you need them

Increase the mA to go through the shoulders and the pelvis

Dose concern ?

Could x-rays be responsible for cancer?

- In the general population

- In the medical community

March 17, 2011|By Cory Franklin

In the last 10 years, the use of CT scans has exploded. In 1980, 3 million CT scans were performed. The projection for 2011 is 72 million, nearly 20,000 every day.

Computed Tomography — An Increasing Source of Radiation Exposure. David J. Brenner, Ph.D., D.Sc., and Eric J. Hall, D.Phil., D.Sc. N Engl J Med 2007; 357:2277-2284 <u>November 29, 2007</u>

In the scientific community

NEWS**FOCUS**

Second Thoughts About CT Imaging

Concern that CT scan radiation is causing cancer has focused public scrutiny on radiologists and medical physicists—and riled up controversy imong them. Can they find a solution?

> 25 FEBRUARY 2011 VOL 331 SCIENCE www.sciencemag.org Published by AAAS

Controversy

Based on

- The majority of the model are based on Hiroshima/Nagasaki survivors
- Could a nuclear blast be used to estimate the risk of cancer due to CT ?

Radiation dose - Hiroshima

Table 2

Adult Effective Doses for Various CT Procedures

Examination	Average Effective Dose (mSv)	Values Reported in Literature (mSv)
Head	2	0.9–4.0
Neck	3	
Chest	7	4.0–18.0
Chest for pulmonary embolism	15	13–40
Abdomen	8	3.5–25
Pelvis	6	3.3–10
Three-phase liver study	15	
Spine	6	1.5–10
Coronary angiography	16	5.0–32
Calcium scoring	3	1.0–12
Virtual colonoscopy	10	4.0–13.2

5-100 mSv

Estimated radiation dose received in Switzerland by the general population

Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-63.

Long-term Radiation-Related Health Effects in a Unique Human Population: Lessons Learned from the Atomic Bomb Survivors of Hiroshima and Nagasaki. Evan B. Douple, et al. *Disaster Med Public Health Prep.* 2011 March

Radiation in Switzerland - 2010

Total: 5.6 mSv

Radioprotection et surveillance de la radioactivité en Suisse Résultats 2010

Number of CT realized ...

Radiation risks of medical imaging: separating fact from fantasy. Hendee WR, O'Connor MK. Radiology. 2012 Aug;264(2):312-21.

Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007 Amy Berrington de Gonzalez. Arch Intern Med. 2009;169(22):2071-2077

... and estimated number of cancer

Table 2. Projected Number of Future Cancers That Could Be Related to CT Scans Performed in the United States in 2007, According to CT Scan Type^a

				No. of Cancers			
		Females		Males		Total	1
Type of CT Scan	No. of Scans, ^b Millions (%)	Mean (95% UL)	%	Mean (95% UL)	%	Mean (95% UL)	%
Head	18.7 (33)	1900 (500-4400)	11	2100 (600-4300)	19	4000 (1100-8700)	14
Chest	7.1 (12)	3100 (1400-6100)	17	1000 (500-2000)	9	4100 (1900-8100)	14
Cervical spine	1.8 (3)	700 (200-1700)	4	300 (100-600)	3	1000 (300-2300)	3
Thoracic spine	0.3 (<1)	200 (80-300)	1	50 (20-100)	<1	250 (10-400)	1
Lumbar spine	2.2 (4)	700 (300-1600)	4	500 (200-1100)	5	1200 (400-2700)	4
Abdomen/pelvis	18.3 (32)	8500 (4200-15 000)	47	5500 (2600-9600)	50	14 000 (6900-25 000)	48
CTA chest	2.3 (4)	2200 (1100-4200)	12	500 (200-900)	5	2700 (1300-5000)	9
CTA other ^c	1.6 (3)	400 (200-900)	2	500 (200-1100)	5	900 (300-1900)	3
Whole body	0.3 (<1)	300 (100-500)	2	100 (50-200)	1	400 (200-600)	1
Colonography	0.2 (<1)	70 (30-120)	<1	50 (20-100)	<1	120 (60-200)	<1
Calcium scoring	0.6 (1)	150 (70-300)	1	30 (10-60)	<1	180 (80-400)	<1
Other ^d	3.5 (6)	10 (3-20)	<1	20 (1-80)	<1	30 (4-100)	<1
Total ^e	56.9 (100)	18 000 (9000-28 000)	100	11 000 (6000-16 000)	100 🤇	29 000 (15 000-45 000)	100

Could the CT dose be lowered?

Table 2

Virtual colonoscopy

Adult Effective Doses for Various CT Procedures

Examination	Average Effective Dose	(mSv) Values Reported in Literature (mSv)
Head	2	0.9–4.0
Neck	3	
Chest	7	4.0-18.0
Chest for pulmonary embolism	15	13–40
Abdomen	8	3.5–25
Pelvis	6	3.3–10
Three-phase liver study	15	
Spine	6	1.5–10
Coronary angiography	16	5 0-32
Calcium scoring	3	Table 1

10

Adult Effective Doses for Various Diagnostic Radiology Procedures

	Average Effective	Values Reported in
Examination	Dose (mSv)	Literature (mSv)
Skull	0.1	0.03-0.22
Cervical spine	0.2	0.07-0.3
Thoracic spine	1.0	0.6–1.4
Lumbar spine	1.5	0.5–1.8
Posteroanterior and lateral study of chest	0.1	0.05-0.24
Posteroanterior study of chest	0.02	0.007-0.050
Mammography	0.4	0.10-0.60
Abdomen	0.7	0.04-1.1
Pelvis	0.6	0.2-1.2
Hip	0.7	0.18-2.71

Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-63.

Chest CT with a X-ray dose close to a conventional Chest X-ray:

Iterative reconstruction

CT reconstructions

Computed Tomography — An Increasing Source of Radiation Exposure. David J. Brenner, Ph.D., D.Sc., and Eric J. Hall, D.Phil., D.Sc. N Engl J Med 2007; 357:2277-2284 <u>November 29, 2007</u>

CT Basic principle

CT basic principle - II

(+)

(+)

3	6	2
6	7	6
2	6	3

Apply a LUT: 7 = black 0 = white

Iterative reconstruction

Effects of iterative reconstruction

0.98 mSv

Ultra-low dose CT

Model based iterative reconstruction

Dose reduction

To assess image quality and diagnostic information of chest CT acquired with the dose of a conventional radiography, i.e. with a dose of 0.1-0.15 mSv

Using classical filtered back projection and new iterative reconstruction

590 days of irradiation

9 days of irradiation

590 days of irradiation

9 days of irradiation

PA and lateral Chest X-ray : 0.1 – 0.15 mSv

Coronal reformatted CT Mean 50mm

Coronal reformatted C

Mean 10mm

Coronal reformatted C1 Mean 1mm

Dose: 0.1 - 0.15 mSv

0.12 mSv

Nodules detection

		١			
	nodules	R1	R2	R3	Карра
	Diagnostic CT	28	29	29	0.815
e	F.B.P.	25	24	19	0.684
w Dos	ASIR-40	27	28	18	0.578
Iltra-Lo	ASIR-80	28	29	20	0.654
	MBIR	28	29	29	0.815
Di	agnostic CT vs ULD-CT	ns	ns	ns	

Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations. Neroladaki A, Botsikas D, Boudabbous S, Becker CD, Montet X. Eur Radiol. 2013 Feb;23(2):360-6.

Subtle anomalies

Table 5 Number of patients having ground glass opacities						
				Nun of p	nber atient	S
GGO		Kappa	Five-point scale (median)	R1	R2	R3
Diagnostic CT	Г (SDD/LDD)	0.694	1	11	11	12
ULD-CT	FBP	0.172	2	7	11	9
	ASIR-40	0.222	1.5	9	10	8
	ASIR-80	0.184	1	9	9	8
	MBIR	0.367	1	8	14	11
———					• Tal	ole 6

				Nur of p	nber atient	ts
Emphysema		Kappa	Five-point scale (median)	R1	R2	R3
Diagnostic C	T (SDD/LDD)	1	1	9	9	9
ULD-CT	FBP	0.06	2	5	6	5
	ASIR-40	-0.125	1.5	4	5	3
	ASIR-80	-0.317	1	8	5	6
	MBIR	-0.144	2.2	11	16	6

Level of irradiation

Estimated effective dose

Ultra-low dose CT

 Could we combine ultra-low dose chest CT with iodinated contrast media?

A prospective study

164 patients underwent CTPA on a GE 750HD scanner after injection of 60 ml iohexol 350 at 3.5 ml/s

Standard dose CTPA (n=82)

- 100 kV
- 100-500 mA
- 0.984:1 Pitch
- 0.6s Gantry rotation time
- 28 noise index
- 64 x 0.625 detectors configuration

Ultra-low dose CTPA (n=82)

- 100 kV
- 20 mA
- 0.984:1 Pitch
- 0.6s Gantry rotation time
- --
- 64 x 0.625 detectors configuration

Purpose:

To compare image quality and radiation dose between CT pulmonary angiography (CTPA) reconstructed with filtered back projection (FBP) and ultra-low dose CTPA reconstructed with model-based iterative reconstruction (MBIR)

Objective image analysis

- ROIs were drawn in
 - 9 pulmonary vessels
 - 3 background noise
 - 2 muscle density

SNR = HU_{vessels} background noise

 $CNR = (HU_{vessels}-HU_{muscle})$ background noise

• Patients demographics

Standard dose Reduced dose p

Men/Women	46/36	49/33	0.64
Age (year)	64±15	60 ± 14	0.08
Body mass index (kg/m ²)	26.1 ± 6.0	24.8 ± 4.8	0.12

_			
	_	- 1	
	_	. 1	
_			
		- 1	
	-		

	Ultra-low dose CTPA			e Standard dose CTPA
	Mean		SD	Mean SD
Pulmonary Arteries (HU)	340	±	80	356 ± 84 0.22
MPA (HU)	361	±	81	376 ± 93 0.26
RPA (HU)	349	±	82	368 ± 88 0.16
LPA (HU)	342	±	78	364 ± 85 0.09
RUA (HU)	356	±	95	366 ± 96 0.52
RMA (HU)	331	±	79	339 ± 86 0.56
RLA (HU)	340	±	89	352 ± 94 0.42
LUA (HU)	326	±	88	341 ± 84 0.27
LIA (HU)	327	±	89	342 ± 82 0.27
LLA (HU)	340	±	85	357 ± 88 0.21
Subscapular and paraspinal muscle	41	±	10	44 ± 9 0.12
Background noise	6	±	1	10 ± 4 < 0.0001
SNR	56	±	19	43 ± 20 < 0.0001
CNR	50	±	17	38 ± 18 < 0.0001
CTDIvol	0.59	±	0.003	8 ± 1.8 < 0.0001
Effective dose (mSv)	0.31	±	0.03	$4.23 \pm 0.96 < 0.0001$

20 days of irradiation 275 days of irradiation

Routine FBP-CTPA

BMI < 20 kg/m²

20 < BMI < 30 kg/m²

 $BMI > 30 \text{ kg/m}^2$

Ultra-low dose CTPA

Organ dose associated with CTPA

Organ Doses	
Value of Interest	Examination Dose [mSv]
Adrenals	0.0980
Brain	0.0600
Breasts	0.876
Colon	0.00335
Eye Lenses	0.0546
Esophagus	0.488
Gall Bladder	0.0249
Heart	0.678
Kidneys	0.0211
Liver	0.0783
Lungs	0.829
Muscle	0.26
Ovaries	0.00223
Pancreas	0.0729
Red Marrow	0.265
Remainder ICRP103	0.252
Remainder ICRP60	0.246
Salivary Glands	0.0600
Skeleton	0.687
Skin	0.267
Small Intestine	0.00364
Spleen	0.0642
Stomach	0.0518
Thymus	1.093
Thyroid	1.26
Urinary Bladder	0.000413
Uterus	0.000850
ICRP 103	0.357
ICRP 60	0.286

Ultra-low dose standard dose

Organ Doses		Organ Doses	
Value of Interest	Examination Dose [mSv]	Value of Interest	Examination Dose [mSv]
Adrenals	0.0980	Adrenais	2.61
Brain	0.0600	Brain	1.486
Breasts 0.876 mSV	0.876	Breasts 21 789 mSv	21.789
Colon	0.00335	Colon	0.0878
Eye Lenses	0.0546	Eye Lenses	1.35
Esophagus	0.488	Esophagus	12.478
Gall Bladder	0.0249	Gall Bladder	0.673
Heart	0.678	Heart	17.942
Kidneys	0.0211	Kidneys	0.58
Liver	0.0783	Liver	2.139
Lungs	0.829	Lungs	21.319
Muscle	0.26	Muscle	6.539
Ovaries	0.00223	Ovaries	0.0753
Pancreas	0.0729	Pancreas	1.962
Red Marrow	0.265	Red Marrow	6.641
Remainder ICRP103	0.252	Remainder ICRP103	6.335
Remainder ICRP60	0.246	Remainder ICRP60	6.182
Salivary Glands	0.0600	Salivary Glands	1.486
Skeleton	0.687	Skeleton	17.188
Skin	0.267	Skin	6.717
Small Intestine	0.00364	Small Intestine	0.0997
Spleen	0.0642	Spleen	1.754
Stomach	0.0518	Stomach	1.426
Thymus	1.093	Thymus	27.12
Thyroid	1.26	Thyroid	31.17
Urinary Bladder	0.000413	Urinary Bladder	0.0102
Uterus 0.00085 mSv	0.000850	Uterus 0.0243 mSv	0.0243
ICRP 103	0.357	ICRP 103	9.018
ICRP 60	0.286	ICRP 60	7.239

Conclusion

• CT protocols have to be tailored to your patient, i.e. personalized CT protocols

- CT dose reduction is only possible with clear indications/questions
 - We may be able to image PE with a dose of 0.2 mSv
 - Whereas we may not be able to image interstitial pneumonia with this dose

Thank you

xavier.montet@hcuge.ch